Infectious Cryptosporidium parvum Oocysts in Final Reclaimed Effluent

Angela L. Gennaccaro,* Molly R. McLaughlin,† Walter Quintero-Betancourt, Debra E. Huffman, and Joan B. Rose‡

Department of Marine Science, University of South Florida, St. Petersburg, Florida 33701

Received 6 December 2002/Accepted 2 June 2003

Water samples collected throughout several reclamation facilities were analyzed for the presence of infectious Cryptosporidium parvum by the focus detection method—most-probable-number cell culture technique. Results revealed the presence of infectious C. parvum oocysts in 40% of the final disinfected effluent samples. Sampled effluent contained on average seven infectious oocysts per 100 liters. Thus, reclaimed water is not pathogen free but contains infectious C. parvum.

Reclaimed water (treated wastewater) is being utilized in the United States and throughout the world as an alternative non-potable water source. In the United States, 18 states currently have standards and another 18 have guidelines for reclaimed water (8). These standards, for the most part, are based on total suspended solids and fecal coliforms. A variety of microbial pathogens are present in wastewater and can be detected in reclaimed water. Therefore, advanced treatment, including filtration and disinfection, is required to produce reclaimed water that does not have a negative impact on public health. In regulatory language, this means that pathogens are to be less than the limit of detection of the assay (8).

Cryptosporidium parvum, a coccidian protozoan parasite, is a potential contaminant of reclaimed water. C. parvum oocysts have been found to be persistent in the environment and resistant to chlorination. Because of this, physical removal by chemical pretreatment and filtration is the primary means of reducing the level of oocysts in environmental water (6). A possible risk to human health exists if filtration fails to function efficiently. This risk is greater still with reclaimed water, as to date no monitoring for C. parvum oocysts has been required and little information is available on the filtration efficiency in these facilities. Recently, in the state of Florida, monitoring for protozoan parasites, including Cryptosporidium, once every 2 years for larger facilities and once every 5 years for smaller facilities has been mandated. Sampling is recommended at a single point following disinfection (2).

In one study, C. parvum oocysts were detected in untreated wastewater (67% of the samples were positive) and in reclaimed water (25% of final effluent samples were positive) (5). However, only the presence of the oocysts was evaluated using fluorescence microscopy. Robertson et al. evaluated waste-water samples for viable C. parvum by using vital stains; 35% of the influent samples and 46% of the effluent samples contained viable oocysts (4). In the last few years, the focus detection method—most-probable-number (FDM-MPN) cell culture technique has been developed to test the oocyst infectivity because the previously employed methods did not accurately reflect the infectious nature of the oocysts (7). The objective of the present study was to demonstrate the presence of infectious C. parvum oocysts in final reclaimed effluent from six reclamation facilities in the United States by using the FDM-MPN cell culture technique.

Samples were collected from influent, secondary effluent, postfiltration, and final disinfected effluent waters. Six reclamation facilities in the United States, utilizing a variety of filtration systems (shallow- or deep-bed sand and anthracite filters or fabric disk filters) and disinfection methods (chlorine gas or UV radiation), were monitored. Three facilities were monitored five times over a 1-year time period. Three additional facilities were monitored over a 5-month time period. One to 400 liters of sample, depending on the site, was filtered through Envirochek HV filters (Pall Gelman Laboratories, Ann Arbor, Mich.). After filtration, elution, and centrifugation, using the guidelines provided by EPA method 1623 (9), oocysts were concentrated into a pellet by immunomagnetic separation (Dynabeads Anti-Crypto Kit; Dynal Biotech, Inc., Lake Success, N.Y.).

Half of the concentrated pellet was analyzed by the FDM-MPN cell culture technique (7). The other half of the concentrated pellet was processed by microscopic screening of the sample after staining with monoclonal antibodies [anti-Cryptosporidium; Waterborne Inc., New Orleans, La.] tagged with fluorescein isothiocyanate, using an indirect fluorescent-antibody assay (IFA) to determine total counts of oocysts. The concentrate was first bleach treated at room temperature for 8 min with a 10.5% solution of 4% sodium hypochlorite in phosphate-buffered saline (PBS; pH 7.2) to eliminate bacterial contamination as well as to trigger excystation of the oocysts. The sample was then washed once with PBS and centrifuged, after which the pellet was suspended in 1 ml of prewarmed growth medium (RPMI 1640 [Fisher Scientific, Pittsburgh, Pa.] plus...
reclaimed effluent samples, since recovery efficiencies are not
may be present in all samples, but especially final disinfected
ma-irradiated oocysts labeled with Texas Red. Thus, it is im-
final disinfected effluent samples for 12 trials (standard devia-
tion, 
:!:11.2) have been observed in our laboratory using gam-
Influent 18 78 33 <5.6 36.8 26,300 5,065 6,910 ± 7,731 993 ± 1,277
Secondary effluent 18 83 39 <12.8 <2.5 345 106 112 ± 153 37 ± 28
Postfiltration 17 71 35 <1.0 <2.2 157 19 37 ± 73 5 ± 5
Final disinfected effluent 15 67 40 <1.8 <1 178 27 28 ± 52 7 ± 9

C. parvum oocysts were found in all sites monitored through-
out the treatment process (Table 1). As well, and more import-
anty, infectious C. parvum oocysts were found in all sampling
sites (Table 1). Average concentrations of 6,910 oocysts/100
liters by IFA and 993 infectious oocysts/100 liters by MPN were
found in the influent (raw wastewater). Therefore, roughly
14% of all oocysts observed were infectious in nature. At the
conclusion of treatment, average concentrations of 28 oocysts/
100 liters by IFA and 7 infectious oocysts/100 liters by FDM-
MPN were detected. Roughly 25% of the oocysts detected
were infectious in nature. Average recovery efficiencies of
5.5% from influent samples for four trials (standard deviation,
±1.3), 15.3% from secondary effluent samples for four trials
(standard deviation, ±2.9), and 15% from postfiltered and
final disinfected effluent samples for 12 trials (standard devia-
tion, ±11.2) have been observed in our laboratory using gam-
ma-irradiated oocysts labeled with Texas Red. Thus, it is im-
portant to note that higher concentrations of infectious oocysts
may be present in all samples, but especially final disinfected
reclaimed effluent samples, since recovery efficiencies are not
100%.

During the past decade, there has been an increase in aware-
ness of the risk of illness resulting from C. parvum because of
outbreaks such as that in Milwaukee, Wisconsin, in 1993 (3).
By 1995, surveillance for cryptosporidiosis in the human pop-
ulation had begun in the United States. Between 1995 and
1998, the mean incidence per 100,000 ranged from 0.9 to 3 (1).
The relationship to water transmission is not known. In 1999,
Florida began to require periodic sampling for Cryptospo-
drium and Giardia in reclaimed water systems (10). In this
paper, we report initial findings of infectious C. parvum oocysts
in final reclaimed effluent as determined by the FDM-MPN
method. Additional monitoring to produce a more statistically
significant database and research to determine the best treatment
processes are suggested as the next steps. Eventually, standards
for monitoring of reclaimed water for Cryptosporidium should be
considered. The FDM-MPN method will be a useful tool for
future monitoring requirements to determine the presence of
infectious oocysts and the associated health risk.

This work was funded by the Water Environment Research
Foundation (project number 00-PUM-2T).

REFERENCES
2. Florida Department of Environmental Protection. 1999. Reuse of reclaimed
water and land application, p. 1–123. In Florida Administrative Code. Flor-
da Department of Environmental Protection, Tallahassee.
3. Jackneitz, W. R., N. J. Hoxie, M. E. Proctor, M. S. Gradus, K. A. Blair,
D. E. Peterson, J. J. Kinnieretz, D. G. Adkins, R. K. Fox, J. B. Rose, and
D. P. Davis. 1994. A massive outbreak in Milwaukee of Cryptosporidium
infection transmitted through the public water supply. N. Engl. J. Med.
4. Robertson, L. J., C. A. Paton, A. T. Campbell, P. G. Smith, M. H. Jackson,
R. A. Gilmore, S. E. Black, D. A. Stevenson, and H. V. Smith. 2000. Giardia
oocysts and Cryptosporidium oocysts at sewage treatment works in Scotland,
pathogenic and indicator microorganisms by a full-scale water reclamation
6. Simmons, O. D., III, M. D. Subesey, C. D. Henney, F. W. Schafer III, and
D. S. Frazier. 2001. Concentration and detection of Cryptosporidium oocysts
in surface water samples by method 1622 using ultrafiltration and capsule
assay for enumeration of infectious Cryptosporidium parvum oocysts. Appl.
EPA/625/R-92/004. Office of Water, U.S. Environmental Protection
Agency, Washington, D.C.
and Giardia in water by filtration/IMS/IFA. EPA/821/R-99036. Office of
Water, U.S. Environmental Protection Agency, Washington, D.C.